जर्नल ऑफ़ न्यूरोलॉजी एंड न्यूरोसाइंस

  • आईएसएसएन: 2171-6625
  • जर्नल एच-इंडेक्स: 17
  • जर्नल उद्धरण स्कोर: 4.43
  • जर्नल प्रभाव कारक: 3.38
में अनुक्रमित
  • जे गेट खोलो
  • जेनेमिक्स जर्नलसीक
  • वैश्विक प्रभाव कारक (जीआईएफ)
  • चीन राष्ट्रीय ज्ञान अवसंरचना (सीएनकेआई)
  • रिसर्च जर्नल इंडेक्सिंग की निर्देशिका (डीआरजेआई)
  • ओसीएलसी- वर्ल्डकैट
  • प्रोक्वेस्ट सम्मन
  • वैज्ञानिक जर्नल प्रभाव कारक (एसजेआईएफ)
  • यूरो पब
  • गूगल ज्ञानी
  • गुप्त खोज इंजन लैब्स
इस पृष्ठ को साझा करें

अमूर्त

The Potential Therapeutic Value of BDNF-TrkB Pathway in COVID-19 Associated Stroke

Sanketh Andhavarapu, Joseph Bryant, Volodymr Gerzanich, Marc J Simard and Tapas Kumar Makar

Infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared the coronavirus disease 2019 (COVID-19) pandemic by the World Health Organization (WHO) on March 11th, 2020. While most symptoms are those associated with the respiratory system, common symptoms also involve the nervous system. Stroke is a common complication of COVID-19, and it has been stated that future research should investigate the underlying mechanisms of COVID-19 associated thrombosis in order to develop preventative strategies for complications such as ischemic stroke. This is likely because SARS-CoV-2 binds to the angiotensin converting enzyme 2 (ACE2) receptor, and decreased activity of ACE2 promotes risk of stroke by causing an imbalance of the renin-angiotensin system. ACE2 is an enzyme that plays a role in the release of neurotrophic factors such as brain derived neurotrophic factor (BDNF), which plays a critical role in neurogenesis, cognitive function, and neurodevelopment. Earlier, it has been reported that the BDNF-TrkB system is neuroprotective during stroke. BDNF-TrkB signalling acts as a mediator of the renin-angiotensin system in the brain, and this regulatory effect may be disturbed during COVID-19 infection. This review consolidates the existing literature on the extensive role of the renin-angiotensin system and angiogenesis in COVID-19 and stroke with a focus on the BDNF-TrkB pathway. We hypothesize that the risk for stroke is higher in COVID-19 patients due to inhibition of BDNF that results from the downregulation of the ACE2 receptor during infection of SARS-CoV-2. In parallel, this review suggests that BDNF therapy may reduce the risk of stroke events and/or aid post-stroke recovery in COVID-19 patients.